🥑
Codding Problems Solutions
  • Introduction
  • CodeWars ⚔️
    • 🌝Beta
      • Count vowels
      • Who am I?
    • 🎒8 Kyu
      • Get the mean of an array
      • Multiply
      • SQL Basics: Mod
    • 🎁7 Kyu
      • 80's Kids #2: Help ALF Find His Spaceship
      • Complementary DNA
      • GROCERY STORE: Inventory
      • Get the Middle Character
      • Growth of a Population
      • Highest and Lowest
      • Indexed capitalization
      • Jaden Casing Strings
      • Moves in squared strings (I)
      • SQL with Harry Potter: Sorting Hat Comparators
      • SQL: Regex String to Table
      • Shortest Word
      • Sorted? yes? no? how?
      • String ends with?
      • Sum of odd numbers
      • Sum of the first nth term of Series
      • Two to One
      • What time is it?
    • 🎩6 Kyu
      • Are they the "same"?
      • Backspaces in string
      • Banker's Plan
      • Bouncing Balls
      • Count the smiley faces!
      • Counting Duplicates
      • Delete occurrences of an element if it occurs more than n times
      • Dubstep
      • Framed Reflection
      • Is a number prime?
      • Linked Lists - Length & Count
      • Lottery Ticket
      • Maze Runner
      • Mexican Wave
      • Number Format
      • Persistent Bugger.
      • Playing with digits
      • Replace With Alphabet Position
      • SQL Basics: Simple EXISTS
      • SQL Basics: Simple HAVING
      • SQL Basics: Simple IN
      • Statistics for an Athletic Association
      • The Deaf Rats of Hamelin
      • Tortoise racing
      • Unique In Order
      • Who likes it?
    • 🎯5 Kyu
      • Double Cola
      • Integers: Recreation One
      • Maximum subarray sum
      • Moving Zeros To The End
      • Pete, the baker
      • Pick peaks
      • Product of consecutive Fib numbers
      • Rot13
      • The Hunger Games - Zoo Disaster!
      • Using Window Functions To Get Top N per Group
      • Variadic Parameter Pack Count
    • 💍4 Kyu
      • Matrix Determinant
      • Memoized Log Cutting
      • Range Extraction
      • Roman Numerals Helper
      • Simple Fun #159: Middle Permutation
      • Strip Comments
      • Sum of Intervals
      • The observed PIN
      • Tuple sum
  • LeetCode 🍃
    • 👌Easy
      • Backspace String Compare
      • Binary Search
      • Binary Tree Tilt
      • Check If N and Its Double Exist
      • Climbing Stairs
      • Complement of Base 10 Integer
      • Consecutive Characters
      • Contains Duplicate
      • Convert Binary Number in a Linked List to Integer
      • Count and Say
      • Defanging an IP Address
      • Delete Node in a Linked List
      • Duplicate Zeros
      • Excel Sheet Column Number
      • Fibonacci Number
      • Find All Numbers Disappeared in an Array
      • Find Numbers with Even Number of Digits
      • Find the Difference
      • First Unique Character in a String
      • Fizz Buzz
      • Goat Latin
      • Height Checker
      • Implement strStr()
      • Intersection of Two Arrays II
      • Invert Binary Tree
      • Jewels and Stones
      • Kids With the Greatest Number of Candies
      • Length of Last Word
      • Longest Common Prefix
      • Longest Word in Dictionary
      • Max Consecutive Ones
      • Maximum Depth of Binary Tree
      • Merge Sorted Array
      • Merge Two Sorted Lists
      • Middle of the Linked List
      • Minimum Depth of Binary Tree
      • Move Zeroes
      • N-th Tribonacci Number
      • Number of 1 Bits
      • Number of Good Pairs
      • Number of Recent Calls
      • Palindrome Number
      • Pascal's Triangle II
      • Path Sum
      • Plus One
      • Power of Four
      • Power of Two
      • Remove Duplicates from Sorted Array
      • Remove Element
      • Replace Elements with Greatest Element on Right Side
      • Reverse Bits
      • Reverse Integer
      • Reverse String
      • Roman to Integer
      • Running Sum of 1d Array
      • Shuffle the Array
      • Single Number
      • Sort Array By Parity
      • Squares of a Sorted Array
      • Sum of Left Leaves
      • Sum of Root To Leaf Binary Numbers
      • Symmetric Tree
      • Tenth Line
      • Third Maximum Number
      • Transpose Matrix
      • Two Sum
      • Valid Anagram
      • Valid Mountain Array
      • Valid Parentheses
      • Word Pattern
      • XOR Operation in an Array
    • 👊Medium
      • All Elements in Two Binary Search Trees
      • Asteroid Collision
      • Binary Tree Inorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Preorder Traversal
      • Bulls and Cows
      • Car Pooling
      • Combination Sum
      • Combination Sum III
      • Compare Version Numbers
      • Counting Bits
      • Course Schedule II
      • Design Linked List
      • Gas Station
      • House Robber
      • Image Overlap
      • Insert Interval
      • Insert into a Binary Search Tree
      • Insertion Sort List
      • K-diff Pairs in an Array
      • Kth Largest Element in an Array
      • Longest Substring Without Repeating Characters
      • Lowest Common Ancestor of a Binary Tree
      • Majority Element II
      • Maximum Difference Between Node and Ancestor
      • Maximum Product Subarray
      • Minimum Domino Rotations For Equal Row
      • Minimum Number of Arrows to Burst Balloons
      • Random Point in Non-overlapping Rectangles
      • Remove Covered Intervals
      • Rotate Array
      • Rotate Image
      • Rotate List
      • Rotting Oranges
      • Serialize and Deserialize BST
      • Sort List
      • String to Integer (atoi)
      • Teemo Attacking
      • Top K Frequent Elements
      • Valid Sudoku
    • 💪Hard
      • Median of Two Sorted Arrays
      • Parsing A Boolean Expression
      • Recover Binary Search Tree
      • Stone Game IV
Powered by GitBook
On this page
  • Valid Sudoku
  • Solutions
  • 🧠 Cpp

Was this helpful?

  1. LeetCode 🍃
  2. Medium

Valid Sudoku

PreviousTop K Frequent ElementsNextHard

Last updated 4 years ago

Was this helpful?

Determine if a 9 x 9 Sudoku board is valid. Only the filled cells need to be validated according to the following rules:

  1. Each row must contain the digits 1-9 without repetition.

  2. Each column must contain the digits 1-9 without repetition.

  3. Each of the nine 3 x 3 sub-boxes of the grid must contain the digits 1-9 without repetition.

Note:

  • A Sudoku board (partially filled) could be valid but is not necessarily solvable.

  • Only the filled cells need to be validated according to the mentioned rules.

Example 1:


Input: board = 
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
Output: true

Example 2:


Input: board = 
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
Output: false
Explanation: Same as Example 1, except with the 5 in the top left corner being modified to 8. Since there are two 8's in the top left 3x3 sub-box, it is invalid.

Constraints:

  • board.length == 9

  • board[i].length == 9

  • board[i][j] is a digit or '.'.

Solutions

🧠 Cpp

#include <algorithm>
#include <map>


enum SudokuBitmap
{
    a1 = 1 << 1,
    a2 = 1 << 2,
    a3 = 1 << 3,
    a4 = 1 << 4,
    a5 = 1 << 5,
    a6 = 1 << 6,
    a7 = 1 << 7,
    a8 = 1 << 8,
    a9 = 1 << 9
};

map<char, SudokuBitmap> SudokuMap
{
{'1',a1},
{'2',a2},
{'3',a3},
{'4',a4},
{'5',a5},
{'6',a6},
{'7',a7},
{'8',a8},
{'9',a9}
};

class Solution
{
public:
    bool isValidSudoku(vector<vector<char>>& board)
    {
        short flags = 0;

        const auto cell_is_invalid =
            [&flags, SudokuMap](char a)
            {

                if( !(a == '.' || (a > '0' && a < '9'+1)) ) 
                    return true;
                if(flags & SudokuMap[a])
                    return true;

                flags |= SudokuMap[a];
                return false;
            };


        //check all rows   
        for(auto row : board)
        {
            flags = 0;
            bool invalid = count_if(row.begin(), row.end(), cell_is_invalid);
            if(invalid) return false;
        }

        //check all columns
        for(unsigned i = 0; i < board.size(); ++i)
        {
            flags = 0;
            for(unsigned j = 0; j < board.size(); ++j)
                if(cell_is_invalid(board[j][i]))
                    return false;
        }

        //check every 3x3
        for(unsigned i = 0; i < board.size(); i+=3)
            for(unsigned j = 0; j < board.size(); j+=3)
            {
                flags = 0;
                if(
                  cell_is_invalid(board[i][j]) ||
                  cell_is_invalid(board[i][j+1]) ||
                  cell_is_invalid(board[i][j+2]) ||
                  cell_is_invalid(board[i+1][j]) ||
                  cell_is_invalid(board[i+1][j+1]) ||
                  cell_is_invalid(board[i+1][j+2]) ||
                  cell_is_invalid(board[i+2][j]) ||
                  cell_is_invalid(board[i+2][j+1]) ||
                  cell_is_invalid(board[i+2][j+2])
                 ) return false;
            }

        return true;
    }
};
👊
Valid Sudoku