🥑
Codding Problems Solutions
  • Introduction
  • CodeWars ⚔️
    • 🌝Beta
      • Count vowels
      • Who am I?
    • 🎒8 Kyu
      • Get the mean of an array
      • Multiply
      • SQL Basics: Mod
    • 🎁7 Kyu
      • 80's Kids #2: Help ALF Find His Spaceship
      • Complementary DNA
      • GROCERY STORE: Inventory
      • Get the Middle Character
      • Growth of a Population
      • Highest and Lowest
      • Indexed capitalization
      • Jaden Casing Strings
      • Moves in squared strings (I)
      • SQL with Harry Potter: Sorting Hat Comparators
      • SQL: Regex String to Table
      • Shortest Word
      • Sorted? yes? no? how?
      • String ends with?
      • Sum of odd numbers
      • Sum of the first nth term of Series
      • Two to One
      • What time is it?
    • 🎩6 Kyu
      • Are they the "same"?
      • Backspaces in string
      • Banker's Plan
      • Bouncing Balls
      • Count the smiley faces!
      • Counting Duplicates
      • Delete occurrences of an element if it occurs more than n times
      • Dubstep
      • Framed Reflection
      • Is a number prime?
      • Linked Lists - Length & Count
      • Lottery Ticket
      • Maze Runner
      • Mexican Wave
      • Number Format
      • Persistent Bugger.
      • Playing with digits
      • Replace With Alphabet Position
      • SQL Basics: Simple EXISTS
      • SQL Basics: Simple HAVING
      • SQL Basics: Simple IN
      • Statistics for an Athletic Association
      • The Deaf Rats of Hamelin
      • Tortoise racing
      • Unique In Order
      • Who likes it?
    • 🎯5 Kyu
      • Double Cola
      • Integers: Recreation One
      • Maximum subarray sum
      • Moving Zeros To The End
      • Pete, the baker
      • Pick peaks
      • Product of consecutive Fib numbers
      • Rot13
      • The Hunger Games - Zoo Disaster!
      • Using Window Functions To Get Top N per Group
      • Variadic Parameter Pack Count
    • 💍4 Kyu
      • Matrix Determinant
      • Memoized Log Cutting
      • Range Extraction
      • Roman Numerals Helper
      • Simple Fun #159: Middle Permutation
      • Strip Comments
      • Sum of Intervals
      • The observed PIN
      • Tuple sum
  • LeetCode 🍃
    • 👌Easy
      • Backspace String Compare
      • Binary Search
      • Binary Tree Tilt
      • Check If N and Its Double Exist
      • Climbing Stairs
      • Complement of Base 10 Integer
      • Consecutive Characters
      • Contains Duplicate
      • Convert Binary Number in a Linked List to Integer
      • Count and Say
      • Defanging an IP Address
      • Delete Node in a Linked List
      • Duplicate Zeros
      • Excel Sheet Column Number
      • Fibonacci Number
      • Find All Numbers Disappeared in an Array
      • Find Numbers with Even Number of Digits
      • Find the Difference
      • First Unique Character in a String
      • Fizz Buzz
      • Goat Latin
      • Height Checker
      • Implement strStr()
      • Intersection of Two Arrays II
      • Invert Binary Tree
      • Jewels and Stones
      • Kids With the Greatest Number of Candies
      • Length of Last Word
      • Longest Common Prefix
      • Longest Word in Dictionary
      • Max Consecutive Ones
      • Maximum Depth of Binary Tree
      • Merge Sorted Array
      • Merge Two Sorted Lists
      • Middle of the Linked List
      • Minimum Depth of Binary Tree
      • Move Zeroes
      • N-th Tribonacci Number
      • Number of 1 Bits
      • Number of Good Pairs
      • Number of Recent Calls
      • Palindrome Number
      • Pascal's Triangle II
      • Path Sum
      • Plus One
      • Power of Four
      • Power of Two
      • Remove Duplicates from Sorted Array
      • Remove Element
      • Replace Elements with Greatest Element on Right Side
      • Reverse Bits
      • Reverse Integer
      • Reverse String
      • Roman to Integer
      • Running Sum of 1d Array
      • Shuffle the Array
      • Single Number
      • Sort Array By Parity
      • Squares of a Sorted Array
      • Sum of Left Leaves
      • Sum of Root To Leaf Binary Numbers
      • Symmetric Tree
      • Tenth Line
      • Third Maximum Number
      • Transpose Matrix
      • Two Sum
      • Valid Anagram
      • Valid Mountain Array
      • Valid Parentheses
      • Word Pattern
      • XOR Operation in an Array
    • 👊Medium
      • All Elements in Two Binary Search Trees
      • Asteroid Collision
      • Binary Tree Inorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Preorder Traversal
      • Bulls and Cows
      • Car Pooling
      • Combination Sum
      • Combination Sum III
      • Compare Version Numbers
      • Counting Bits
      • Course Schedule II
      • Design Linked List
      • Gas Station
      • House Robber
      • Image Overlap
      • Insert Interval
      • Insert into a Binary Search Tree
      • Insertion Sort List
      • K-diff Pairs in an Array
      • Kth Largest Element in an Array
      • Longest Substring Without Repeating Characters
      • Lowest Common Ancestor of a Binary Tree
      • Majority Element II
      • Maximum Difference Between Node and Ancestor
      • Maximum Product Subarray
      • Minimum Domino Rotations For Equal Row
      • Minimum Number of Arrows to Burst Balloons
      • Random Point in Non-overlapping Rectangles
      • Remove Covered Intervals
      • Rotate Array
      • Rotate Image
      • Rotate List
      • Rotting Oranges
      • Serialize and Deserialize BST
      • Sort List
      • String to Integer (atoi)
      • Teemo Attacking
      • Top K Frequent Elements
      • Valid Sudoku
    • 💪Hard
      • Median of Two Sorted Arrays
      • Parsing A Boolean Expression
      • Recover Binary Search Tree
      • Stone Game IV
Powered by GitBook
On this page
  • Maze Runner
  • Introduction
  • Task
  • Rules
  • Kata Series
  • Solutions

Was this helpful?

  1. CodeWars ⚔️
  2. 6 Kyu

Maze Runner

PreviousLottery TicketNextMexican Wave

Last updated 4 years ago

Was this helpful?

Introduction


Welcome Adventurer. Your aim is to navigate the maze and reach the finish point without touching any walls. Doing so will kill you instantly!

Task


You will be given a 2D array of the maze and an array of directions. Your task is to follow the directions given. If you reach the end point before all your moves have gone, you should return Finish. If you hit any walls or go outside the maze border, you should return Dead. If you find yourself still in the maze after using all the moves, you should return Lost.

The Maze array will look like

maze = [[1,1,1,1,1,1,1],
        [1,0,0,0,0,0,3],
        [1,0,1,0,1,0,1],
        [0,0,1,0,0,0,1],
        [1,0,1,0,1,0,1],
        [1,0,0,0,0,0,1],
        [1,2,1,0,1,0,1]]

..with the following key


      0 = Safe place to walk
      1 = Wall
      2 = Start Point
      3 = Finish Point
  directions = "NNNNNEEEEE" == "Finish" // (directions passed as a string)
  direction = ["N","N","N","N","N","E","E","E","E","E"] == "Finish"
  direction = ["N","N","N","N","N","E","E","E","E","E"] == "Finish"
  direction = ["N","N","N","N","N","E","E","E","E","E"] == "Finish"
  direction = ["N","N","N","N","N","E","E","E","E","E"] == "Finish"
  direction = ["N","N","N","N","N","E","E","E","E","E"] == "Finish"
  direction = ["N","N","N","N","N","E","E","E","E","E"] == "Finish"

Rules


1. The Maze array will always be square i.e. N x N but its size and content will alter from test to test.

2. The start and finish positions will change for the final tests.

3. The directions array will always be in upper case and will be in the format of N = North, E = East, W = West and S = South.

4. If you reach the end point before all your moves have gone, you should return Finish.

5. If you hit any walls or go outside the maze border, you should return Dead.

6. If you find yourself still in the maze after using all the moves, you should return Lost.

Good luck, and stay safe!

Kata Series

If you enjoyed this, then please try one of my other Katas. Any feedback, translations and grading of beta Katas are greatly appreciated. Thank you.

Solutions

🐍 Python

def maze_runner(maze, directions):
    runner_y, runner_x = 0, 0
    print(directions)

    #find start
    for n, row in enumerate(maze):
        if 2 in row:
            runner_y = n
            runner_x = row.index(2)
    for dr in directions:
        if dr == 'N':
            runner_y-=1
        elif dr == 'E':
            runner_x+=1
        elif dr == 'W':
            runner_x-=1
        elif dr == 'S':
            runner_y+=1

        if min(runner_y,runner_x) < 0 or max(runner_y,runner_x) > len(maze)-1 or maze[runner_y][runner_x] == 1:
            return "Dead"
        elif maze[runner_y][runner_x] == 3:
            return "Finish"

    return "Lost"

🎩
Maze Runner
Maze Runner
Scooby Doo Puzzle
Driving License
Connect 4
Vending Machine
Snakes and Ladders
Mastermind
Guess Who?
Am I safe to drive?
Mexican Wave
Pigs in a Pen
Hungry Hippos
Plenty of Fish in the Pond
Fruit Machine
Car Park Escape