🥑
Codding Problems Solutions
  • Introduction
  • CodeWars ⚔️
    • 🌝Beta
      • Count vowels
      • Who am I?
    • 🎒8 Kyu
      • Get the mean of an array
      • Multiply
      • SQL Basics: Mod
    • 🎁7 Kyu
      • 80's Kids #2: Help ALF Find His Spaceship
      • Complementary DNA
      • GROCERY STORE: Inventory
      • Get the Middle Character
      • Growth of a Population
      • Highest and Lowest
      • Indexed capitalization
      • Jaden Casing Strings
      • Moves in squared strings (I)
      • SQL with Harry Potter: Sorting Hat Comparators
      • SQL: Regex String to Table
      • Shortest Word
      • Sorted? yes? no? how?
      • String ends with?
      • Sum of odd numbers
      • Sum of the first nth term of Series
      • Two to One
      • What time is it?
    • 🎩6 Kyu
      • Are they the "same"?
      • Backspaces in string
      • Banker's Plan
      • Bouncing Balls
      • Count the smiley faces!
      • Counting Duplicates
      • Delete occurrences of an element if it occurs more than n times
      • Dubstep
      • Framed Reflection
      • Is a number prime?
      • Linked Lists - Length & Count
      • Lottery Ticket
      • Maze Runner
      • Mexican Wave
      • Number Format
      • Persistent Bugger.
      • Playing with digits
      • Replace With Alphabet Position
      • SQL Basics: Simple EXISTS
      • SQL Basics: Simple HAVING
      • SQL Basics: Simple IN
      • Statistics for an Athletic Association
      • The Deaf Rats of Hamelin
      • Tortoise racing
      • Unique In Order
      • Who likes it?
    • 🎯5 Kyu
      • Double Cola
      • Integers: Recreation One
      • Maximum subarray sum
      • Moving Zeros To The End
      • Pete, the baker
      • Pick peaks
      • Product of consecutive Fib numbers
      • Rot13
      • The Hunger Games - Zoo Disaster!
      • Using Window Functions To Get Top N per Group
      • Variadic Parameter Pack Count
    • 💍4 Kyu
      • Matrix Determinant
      • Memoized Log Cutting
      • Range Extraction
      • Roman Numerals Helper
      • Simple Fun #159: Middle Permutation
      • Strip Comments
      • Sum of Intervals
      • The observed PIN
      • Tuple sum
  • LeetCode 🍃
    • 👌Easy
      • Backspace String Compare
      • Binary Search
      • Binary Tree Tilt
      • Check If N and Its Double Exist
      • Climbing Stairs
      • Complement of Base 10 Integer
      • Consecutive Characters
      • Contains Duplicate
      • Convert Binary Number in a Linked List to Integer
      • Count and Say
      • Defanging an IP Address
      • Delete Node in a Linked List
      • Duplicate Zeros
      • Excel Sheet Column Number
      • Fibonacci Number
      • Find All Numbers Disappeared in an Array
      • Find Numbers with Even Number of Digits
      • Find the Difference
      • First Unique Character in a String
      • Fizz Buzz
      • Goat Latin
      • Height Checker
      • Implement strStr()
      • Intersection of Two Arrays II
      • Invert Binary Tree
      • Jewels and Stones
      • Kids With the Greatest Number of Candies
      • Length of Last Word
      • Longest Common Prefix
      • Longest Word in Dictionary
      • Max Consecutive Ones
      • Maximum Depth of Binary Tree
      • Merge Sorted Array
      • Merge Two Sorted Lists
      • Middle of the Linked List
      • Minimum Depth of Binary Tree
      • Move Zeroes
      • N-th Tribonacci Number
      • Number of 1 Bits
      • Number of Good Pairs
      • Number of Recent Calls
      • Palindrome Number
      • Pascal's Triangle II
      • Path Sum
      • Plus One
      • Power of Four
      • Power of Two
      • Remove Duplicates from Sorted Array
      • Remove Element
      • Replace Elements with Greatest Element on Right Side
      • Reverse Bits
      • Reverse Integer
      • Reverse String
      • Roman to Integer
      • Running Sum of 1d Array
      • Shuffle the Array
      • Single Number
      • Sort Array By Parity
      • Squares of a Sorted Array
      • Sum of Left Leaves
      • Sum of Root To Leaf Binary Numbers
      • Symmetric Tree
      • Tenth Line
      • Third Maximum Number
      • Transpose Matrix
      • Two Sum
      • Valid Anagram
      • Valid Mountain Array
      • Valid Parentheses
      • Word Pattern
      • XOR Operation in an Array
    • 👊Medium
      • All Elements in Two Binary Search Trees
      • Asteroid Collision
      • Binary Tree Inorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Preorder Traversal
      • Bulls and Cows
      • Car Pooling
      • Combination Sum
      • Combination Sum III
      • Compare Version Numbers
      • Counting Bits
      • Course Schedule II
      • Design Linked List
      • Gas Station
      • House Robber
      • Image Overlap
      • Insert Interval
      • Insert into a Binary Search Tree
      • Insertion Sort List
      • K-diff Pairs in an Array
      • Kth Largest Element in an Array
      • Longest Substring Without Repeating Characters
      • Lowest Common Ancestor of a Binary Tree
      • Majority Element II
      • Maximum Difference Between Node and Ancestor
      • Maximum Product Subarray
      • Minimum Domino Rotations For Equal Row
      • Minimum Number of Arrows to Burst Balloons
      • Random Point in Non-overlapping Rectangles
      • Remove Covered Intervals
      • Rotate Array
      • Rotate Image
      • Rotate List
      • Rotting Oranges
      • Serialize and Deserialize BST
      • Sort List
      • String to Integer (atoi)
      • Teemo Attacking
      • Top K Frequent Elements
      • Valid Sudoku
    • 💪Hard
      • Median of Two Sorted Arrays
      • Parsing A Boolean Expression
      • Recover Binary Search Tree
      • Stone Game IV
Powered by GitBook
On this page
  • Course Schedule II
  • Solutions
  • 🧠 Cpp

Was this helpful?

  1. LeetCode 🍃
  2. Medium

Course Schedule II

PreviousCounting BitsNextDesign Linked List

Last updated 4 years ago

Was this helpful?

There are a total of n courses you have to take labelled from 0 to n - 1.

Some courses may have prerequisites, for example, if prerequisites[i] = [ai, bi] this means you must take the course bi before the course ai.

Given the total number of courses numCourses and a list of the prerequisite pairs, return the ordering of courses you should take to finish all courses.

If there are many valid answers, return any of them. If it is impossible to finish all courses, return an empty array.

Example 1:


Input: numCourses = 2, prerequisites = [[1,0]]
Output: [0,1]
Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1].

Example 2:


Input: numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
Output: [0,2,1,3]
Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3].

Example 3:


Input: numCourses = 1, prerequisites = []
Output: [0]

Constraints:

  • 1 <= numCourses <= 2000

  • 0 <= prerequisites.length <= numCourses * (numCourses - 1)

  • prerequisites[i].length == 2

  • 0 <= ai, bi < numCourses

  • ai != bi

  • All the pairs [ai, bi] are distinct.

Solutions

🧠 Cpp

#include <memory>
#include <functional>

struct Course
{
    int id;
    bool learned = false;
    vector<Course*> depends_on;

    Course(int i):id(i), learned(false){}
};

class Solution
{
    bool found_loop(Course *start, Course *course_to_check, int len, int current_len)
    {

        if(current_len > len)
            return true;
        for(auto* course : start->depends_on)
        {   if(course == course_to_check)
                return true;
            if(found_loop(course, course_to_check, len, current_len+1))
                return true;
        }
        return false;
    }
public:
    vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites)
    {
        vector<Course*> courses;
        for(int i = 0; i < numCourses; ++i)
            courses.push_back(new Course(i));

        //copy graph from input
        Course *dependancy_tree = nullptr; 
        for(auto p : prerequisites)
            courses[p[0]]->depends_on.push_back(courses[p[1]]); 

        //function to mark learned couses in order 
        vector<int> res;
        std::function<void(int)> learn_course = [&courses, &res, &learn_course](int id)
        {
            if(courses[id]->learned)
                return;

            for(auto* course : courses[id]->depends_on)
                learn_course(course->id);

            courses[id]->learned = true;
            res.push_back(id);
        };

        //check for loops
        for(auto* c : courses)
        if(found_loop(c, c, courses.size(), 1))
            return  vector<int>{};
        for(auto* c : courses)
            learn_course(c->id);
        for(auto* c : courses)
            delete c;

        return res.size() == courses.size() ? res : vector<int>{}; 


    }
};
👊
Course Schedule II